145 lines
5.6 KiB
Python
145 lines
5.6 KiB
Python
![]() |
import os # Os is used for interacting with the operating system
|
||
|
from openai import OpenAI # OpenAI is used for interacting with the OpenAI API
|
||
|
from .base_model import ModelInterface # Used for agent interface
|
||
|
from dotenv import load_dotenv # Used for loading environment variables
|
||
|
|
||
|
load_dotenv() # Load environment variables from .env file
|
||
|
|
||
|
class OpenAIModel(ModelInterface): # OpenAIModel inherits from ModelInterface
|
||
|
'''
|
||
|
OpenAI model implementation.
|
||
|
'''
|
||
|
|
||
|
def __init__(self, my_api_key=None, model_name="gpt-4o"):
|
||
|
'''
|
||
|
Initialize the OpenAI model.
|
||
|
'''
|
||
|
|
||
|
# ai model setup
|
||
|
self.model_name = model_name # Set the model type we want to use
|
||
|
if my_api_key:
|
||
|
self.client = OpenAI(api_key=my_api_key)
|
||
|
else:
|
||
|
self.client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
||
|
|
||
|
# -------------------------------------------------------------------
|
||
|
# Helper to generate a response to a given prompt using the OpenAI API.
|
||
|
# -------------------------------------------------------------------
|
||
|
def generate_response(self, prompt, **kwargs):
|
||
|
"""Generate a response to a given prompt using the OpenAI API.
|
||
|
|
||
|
Args:
|
||
|
prompt (str): The prompt to generate a response to.
|
||
|
**kwargs: Additional keyword arguments.
|
||
|
|
||
|
Returns:
|
||
|
str: The generated response.
|
||
|
|
||
|
Example:
|
||
|
>>> openai_model = OpenAIModel()
|
||
|
>>> response = openai_model.generate_response("What is the weather in Tokyo?")
|
||
|
"""
|
||
|
if isinstance(prompt, str):
|
||
|
return self.generate_response_from_string(prompt, **kwargs)
|
||
|
elif isinstance(prompt, list[dict]):
|
||
|
return self.generate_response_dictionary(prompt)
|
||
|
|
||
|
# -------------------------------------------------------------------
|
||
|
# Helper to generate a response to a given prompt using a list of dictionaries
|
||
|
# -------------------------------------------------------------------
|
||
|
def generate_response_dictionary(self, prompt: list[dict]) -> str:
|
||
|
"""Generate a response to a given prompt using a list of dictionaries.
|
||
|
|
||
|
Args:
|
||
|
prompt (list[dict]): The prompt to generate a response to.
|
||
|
|
||
|
Returns:
|
||
|
str: The generated response.
|
||
|
|
||
|
Example:
|
||
|
>>> openai_model = OpenAIModel()
|
||
|
>>> response = openai_model.generate_response_dictionary([{"role": "user", "parts": "What is the weather in Tokyo?"}])
|
||
|
"""
|
||
|
try:
|
||
|
response = self.client.chat.completions.create( # Create a chat completion with the OpenAI API
|
||
|
model=self.model_name, # Set the model type we want to use
|
||
|
messages=prompt # Set the prompt we want to use
|
||
|
)
|
||
|
|
||
|
return response.choices[0].message.content.strip()
|
||
|
except Exception as e:
|
||
|
return f"Error generating response: {str(e)}"
|
||
|
|
||
|
|
||
|
|
||
|
# -------------------------------------------------------------------
|
||
|
# Helper to generate a response to a given prompt using a string
|
||
|
# -------------------------------------------------------------------
|
||
|
def generate_response_from_string(self, prompt, **kwargs):
|
||
|
"""
|
||
|
Description:
|
||
|
Generate a response to a given prompt using a string.
|
||
|
|
||
|
Args:
|
||
|
prompt (str): The prompt to generate a response to.
|
||
|
**kwargs: Additional keyword arguments.
|
||
|
|
||
|
Returns:
|
||
|
str: The generated response.
|
||
|
|
||
|
Example:
|
||
|
>>> openai_model = OpenAIModel()
|
||
|
>>> response = openai_model.generate_response_from_string("What is the weather in Tokyo?")
|
||
|
"""
|
||
|
# Extract personality and style from kwargs, or use defaults from agent_template
|
||
|
if kwargs:
|
||
|
if "personality" in kwargs:
|
||
|
personality = kwargs.get("personality")
|
||
|
if "communication_style" in kwargs:
|
||
|
communication_style = kwargs.get("communication_style")
|
||
|
else:
|
||
|
personality = ""
|
||
|
communication_style = ""
|
||
|
|
||
|
try:
|
||
|
# instructions being sent to the ai model
|
||
|
messages = []
|
||
|
|
||
|
# add personality and style to the instructions
|
||
|
if personality or communication_style:
|
||
|
persona_prompt = f"{personality} {communication_style}".strip()
|
||
|
messages.append({
|
||
|
"role": "system",
|
||
|
"content": persona_prompt
|
||
|
})
|
||
|
|
||
|
# User message
|
||
|
messages.append({
|
||
|
"role": "user",
|
||
|
"content": prompt
|
||
|
})
|
||
|
|
||
|
# generate the response
|
||
|
# generate the response
|
||
|
# response = self.client.chat.completions.create( # Create a chat completion with the OpenAI API
|
||
|
# model=self.model_name, # Set the model type we want to use
|
||
|
# messages=messages, # Set the prompt we want to use
|
||
|
# temperature=0.7, # Set the temperature of the response
|
||
|
# max_tokens=400, # Set the maximum number of tokens to generate
|
||
|
# )
|
||
|
response = self.client.chat.completions.create( # Create a chat completion with the OpenAI API
|
||
|
model=self.model_name, # Set the model type we want to use
|
||
|
messages=messages # Set the prompt we want to use
|
||
|
)
|
||
|
|
||
|
return response.choices[0].message.content.strip()
|
||
|
|
||
|
except Exception as e:
|
||
|
return f"Error generating response: {str(e)}"
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
openai_model = OpenAIModel()
|
||
|
response = openai_model.generate_response("Tell me 10 one liners about crypto. put them as a json object")
|
||
|
print(response)
|