import os
import anthropic
from .base_model import ModelInterface
from dotenv import load_dotenv
import sys
import json

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

load_dotenv()

class ClaudeModel(ModelInterface):
    """DeepSeek model implementation.

    Attributes:
        model (str): The name of the DeepSeek model to use.
    """

    def __init__(self, my_api_key=None, model_name="claude-3-5-sonnet-20241022"):
        """Initialize the DeepSeek model.

        Args:
            api_key (str): The API key to use for the DeepSeek model.
            model_name (str): The name of the DeepSeek model to use.

        Example:
            >>> deepseek_model = DeepSeekModel()
        """

        self.model_name = model_name

        if my_api_key:
            self.client = client = anthropic.Anthropic(
            # defaults to os.environ.get("ANTHROPIC_API_KEY")
            api_key=my_api_key,
            )
        else:
            self.client = anthropic.Anthropic(
            api_key=os.environ.get("ANTHROPIC_API_KEY")
            )

    # -------------------------------------------------------------------
    # Helper to generate a response to a given prompt using the OpenAI API.
    # -------------------------------------------------------------------
    def generate_response(self, prompt, **kwargs):
        """Generate a response to a given prompt using the DeepSeek API.

        Args:
            prompt (str): The prompt to generate a response to.
            **kwargs: Additional keyword arguments.

        Returns:
            str: The generated response.

        Example:
            >>> deepseek_model = DeepSeekModel()
            >>> response = deepseek_model.generate_response("What is the weather in Tokyo?")
        """
        if isinstance(prompt, str):
            return self.generate_response_from_string(prompt, **kwargs)       
        elif isinstance(prompt, list[dict]):
            return self.generate_response_dictionary(prompt)

    # -------------------------------------------------------------------
    # Helper to generate a response to a given prompt using a list of dictionaries
    # -------------------------------------------------------------------
    def generate_response_dictionary(self, prompt: list[dict]) -> str:
        """Generate a response to a given prompt using a list of dictionaries.

        Args:
            prompt (list[dict]): The prompt to generate a response to.

        Returns:
            str: The generated response.
        
        Example:
            >>> deepseek_model = DeepSeekModel()
            >>> response = deepseek_model.generate_response_dictionary([{"role": "user", "parts": "What is the weather in Tokyo?"}])
        """
        try:
            response = self.client.messages.create( # Create a chat completion with the OpenAI API
                model=self.model_name, # Set the model type we want to use                
                messages=prompt, # Set the prompt we want to use
                max_tokens=1024
            )

            return response.content[0].text if isinstance(response.content, list) else response.content
        except Exception as e:
            return f"Error generating response: {str(e)}"



    # -------------------------------------------------------------------
    # Helper to generate a response to a given prompt using a string
    # -------------------------------------------------------------------
    def generate_response_from_string(self, prompt, **kwargs):
        """
        Description: 
            Generate a response to a given prompt using a string.

        Args:
            prompt (str): The prompt to generate a response to.
            **kwargs: Additional keyword arguments.

        Returns:
            str: The generated response.

        Example:
            >>> deepseek_model = DeepSeekModel()
            >>> response = deepseek_model.generate_response_from_string("What is the weather in Tokyo?")
        """
        # Extract personality and style from kwargs, or use defaults from agent_template
        if kwargs:
            if "personality" in kwargs:
                personality = kwargs.get("personality")
            if "communication_style" in kwargs:
                communication_style = kwargs.get("communication_style")
        else:
            personality = ""
            communication_style = ""        

        try:
            # instructions being sent to the ai model
            messages = []

            # add personality and style to the instructions
            if personality or communication_style:
                persona_prompt = f"{personality} {communication_style}".strip()
                messages.append({
                    "role": "system",
                    "content": persona_prompt
                })

            # User message
            messages.append({
                "role": "user",
                "content": prompt
            })

            # generate the response
            # generate the response
            # response = self.client.messages.create( # Create a chat completion with the OpenAI API
            #     model=self.model_name, # Set the model type we want to use
            #     messages=messages, # Set the prompt we want to use
            #     temperature=0.7, # Set the temperature of the response
            #     max_tokens=400, # Set the maximum number of tokens to generate
            # )
            response = self.client.messages.create( # Create a chat completion with the OpenAI API
                model=self.model_name, # Set the model type we want to use                
                messages=messages, # Set the prompt we want to use
                max_tokens=1024
            )

            return response.content[0].text if isinstance(response.content, list) else response.content

        except Exception as e:
            return f"Error generating response: {str(e)}"


if __name__ == "__main__":
    deepseek_model = DeepSeekModel()
    response = deepseek_model.generate_response("Tell me 10 one liners about crypto. put them as a json object")
    # Extract just the text content from the response
    if hasattr(response, 'text'):
        print("\nClaude's Response:\n")
        print(response.text)
        print("\n")
    else:
        print("\nClaude's Response:\n")
        print(response)
        print("\n")